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1. Introduction 

Virtualization, containers, and unikernels are the fundamental technologies that 
enabled the widespread use of the cloud; therefore, a comparison of their security 
isolation characteristics is necessary to understand the potential threats. Each of 
these technologies contains subtle differences in the methodology and software 
architecture to provide secure isolation between guests. All 3 of these technologies 
commonly provide the same functionality with varying degrees of overhead; 
however, the security isolation is based on a vastly different approach. This report 
first gives the background of each of these technologies, followed by the security 
isolation aspects of each technology. A suggestion on metrics to further evaluate 
security characteristics of each technology is proposed to guide future evaluations. 

2. Background and History 

Virtualization of x86 systems is a fundamental technology that has been in 
existence for some time, whereas containers are rapidly being adopted and 
unikernels are just emerging. An x86 virtualization solution was initially released 
in 1998 by VMware to provide a software-based solution, and the initial release of 
the ESXi type 1 bare-metal hypervisor was developed in 2001.1 In that same year, 
XEN released an open-source type 1 bare-metal hypervisor. At that time, all 
virtualization was achieved in software, resulting in slower performance and 
additional work for the hypervisor. In 2005, Intel introduced hardware 
virtualization extensions, commonly referred to as “hardware-assisted 
virtualization” (i.e., Intel VT-x and VT-d).1 These extensions were added to the 
processor to simplify the tasks of a hypervisor and increase performance. In 2007, 
KVM released a Linux kernel module-based hypervisor, which leveraged 
hardware-assisted virtualization extensions.1 Since 2013, the trend has moved from 
virtualization toward containers. However, containers are not virtualization but 
lend themselves to similar concepts. Containers assisted in the increased utilization 
of hardware within a cloud environment by reducing the server (e.g., web server, 
database server) footprint, resulting in an increased number of services a single 
physical host could run. Then, in 2014, the concept of a unikernel was introduced 
to make the server footprint even smaller and increase performance.2 The evolution 
of each of these technologies improves performance and builds on fundamental 
security isolation at the kernel or processor level in different ways. To better 
understand these differences, a brief introduction and review of the x86 processor 
ring levels follows. 
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3. x86 Processor Ring Levels 

To comprehend the security aspects of virtualization, container, and unikernel 
technology, an understanding of the x86 processor security-ring model is essential. 
The x86 has a concept called security rings (ring 0-3) to define the privilege level 
of instructions run within the processor. Conventionally, ring level 0 is the most 
privileged level and the only level that can communicate directly with the hardware, 
whereas ring level 3 is the least privileged. These security rings are enforced at the 
processor level as memory is accessed. Traditional operating systems (OSs) 
leverage these privilege levels with ring level 0 for kernel space, ring level 3 for 
user space, and ring levels 1 and 2 are not used.  

Within most OSs, kernel space contains the drivers and fundamental components 
that communicate directly with the hardware, whereas the user space contains the 
applications running on the OS. For example, because a user application such as a 
Web browser needs to access the hardware, a system call into the kernel is made, 
and during this time a context switch will happen. The context switch from the user 
space to the kernel space occurs and allows the kernel to communicate directly with 
the hardware on behalf of the Web browser. In addition, traditional hardware allows 
each process to operate on pages within the main memory. Each running process 
contains a page table to convert the virtual memory address to the physical memory 
addresses within main memory. These page tables also contain access rights and 
the associated ring level of the process. The page tables can only be modified by 
the kernel (ring 0 process) and cannot be modified by a user-level process. Every 
process contains its own page table of the memory space available to it to prevent 
user processes from interfering with one another. These ring levels combined with 
the hypervisor (“kernel”) are what provide isolation between virtual machines 
(VMs) and are key to virtualization security isolation concepts. The ring levels are 
leveraged in virtualization by a hypervisor, which is either implemented as a 
separate hypervisor kernel or as a Linux Kernel Module. 

4. Virtualization 

In virtualization, the hypervisor provides a layer between the guest OS and the 
physical hardware. There are 2 different types of hypervisors: type 1 (e.g., VMware 
ESXi, KVM, and XEN), which is bare metal, and type 2 (e.g., VMware 
Workstation, and Virtual Box), which runs on a host OS. The hypervisor is 
responsible for communicating directly with and sharing the hardware by 
scheduling central processing unit (CPU) time for each guest VM and allocating 
virtual memory from the physical memory to each VM. As discussed earlier, only 
ring level 0 holds the privileges necessary to communicate directly with the 
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hardware. Therefore, the hypervisor must run at ring level 0. As a result, the guest 
VM kernel must be run at a lower privilege level, which does not allow direct 
communication to the hardware, resulting in a kernel failure.  

The traditional software approach to virtualization is to either modify the guest VM 
kernel code or transparently trap these privileged instructions. VMware pioneered 
the approach of transparently trapping privileged instructions and scanning 
memory of the guest VM and then rewriting these instructions to redirect through 
the hypervisor.1 Another approach to this problem is called paravirtualization, 
which relies on modification of the guest VM kernel. This technique requires 
patches to be applied to the guest VM kernel to communicate indirectly through the 
hypervisor to the hardware. Although these solutions provide an adequate approach 
to virtualization, each requires some sort of modification to the guest VM kernel. 
To further improve performance and decrease the complexity of the hypervisor, 
hardware-assisted virtualization was developed to provide a hardware-based 
solution, which extends the processor instruction set.  

Hardware-assisted virtualization extends the x86 processor instruction set to allow 
virtualization within hardware, allowing a reduction of complexity of the 
hypervisor and overhead, leading to an increase in performance. Although both 
AMD and Intel have similar solutions, the focus of this discussion is Intel. In 2005, 
Intel introduced hardware-assisted virtualization support to their processors with 
VT-x and VT-d. The extended instruction set has support for a guest and host 
domain, which is commonly referred to as ring level -1 (Fig. 1). These extensions 
allow the hypervisor to run in the host domain, whereas the guest VMs run in the 
guest domain, thus allowing the guest VM kernel to run at ring level 0. Similar to 
the traditional case, ring level 0-3 exists in both guest and host domains. In addition, 
the extensions assist with memory management for each guest VM and can also 
allow guest VMs direct access to a dedicated network card and other peripheral 
devices. Hardware-assisted virtualization is offered as an option in each of the 
hypervisor vendors surveyed for this report. 

 

Fig. 1 Hardware virtualization ring levels 
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There are many different hypervisor platforms available, such as Microsoft Hyper-
V, VMware ESXi, KVM, and XEN. This report focuses on both KVM and XEN 
with the use of hardware-assisted virtualization, because both platforms leverage 
hardware-assisted virtualization and are open source with a greater amount of 
documentation available. In addition, QEMU can be used on both hypervisors to 
provide hardware emulation. The purpose of QEMU is to allow an unmodified 
guest OS to share other hardware such as networking, storage (input/output [I/O]), 
and many other devices. Both XEN and KVM offer paravirtualization for I/O 
devices as an alternative to QEMU to increase performance at the cost of modifying 
the guest OS. XEN and KVM provide functionality of virtualization but they differ 
greatly in the design of the software architecture. 

XEN’s architecture was designed as a hypervisor microkernel (Fig. 2) to be 
separated from the drivers and administration, which are hosted within a privileged 
VM commonly referred to as dom0. The other unprivileged guest VMs running on 
the hypervisor are referred to as domU. The privileged VM, dom0, can 
communicate with all of the other untrusted VMs through a shared memory ring 
setup within the XEN hypervisor. In hardware-assisted virtualization, the XEN 
hypervisor is running within the host domain, whereas dom0 is running within the 
guest domain. Both the hypervisor and the guest VM OS kernel are running at ring 
level 0 within the host and guest domain, respectively. The dom0 OS is based on a 
customized Linux kernel. XEN offers the option of either using paravirtualization 
or QEMU to communicate from the guest OS to the physical hardware devices. 
Paravirtualization requires patching of the guest OS kernel, whereas QEMU does 
not require patching of the guest OS kernel. In addition, XEN allows for further 
separation of drivers into respective driver domains, similar to dom0. These driver 
domains provide for further isolation of specific drivers. For example, the network 
drivers could be separated into a separate network driver domain. It has been proven 
with the use of QubesOS3 that these domains provide a strong amount of isolation 
to the specific driver. The strong amount of isolation between drivers is enabled by 
the microkernel design of XEN. 

 

Fig. 2 Microkernel 
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In contrast, KVM is a monolithic (Fig. 3) design, leveraging the existing Linux 
kernel to provide administration and drivers, with a KVM kernel module 
composing the hypervisor functionality. The KVM hypervisor views each guest 
VM as a Linux-based process. Additional isolation between each guest VM is 
provided by SELinux, which restricts process privileges. From an architectural 
perspective, KVM can be considered a monolithic architecture because the 
hypervisor kernel module, drivers, and administration tools are all hosted within 
the Linux kernel. In hardware-assisted virtualization, the kernel module and drivers 
and the KVM user process are run within the host domain at ring levels 0 and 3, 
respectively. Paravirtualization for hardware I/O drivers could also be leveraged in 
KVM. Although, the drivers and the hypervisor kernel module are both located 
within the kernel, there is no isolation between them.  

 
Fig. 3 Monolithic kernel 

As discussed earlier, both XEN and KVM are architecturally different in terms of 
the hypervisor design. XEN contains a separation between the hypervisor kernel 
and the driver modules within dom0, resulting in a microkernel architecture. In 
comparison, KVM combines both the hypervisor module and the driver modules 
within the Linux kernel, resulting in a monolithic kernel architecture. In the XEN 
microkernel architecture, the hypervisor and drivers (dom0) run at different 
privilege levels of host and guest domain, respectively, with the use of hardware-
assisted virtualization. In KVM and hardware-assisted virtualization, both the 
hypervisor and drivers run at ring level 0 within the host domain. It has been argued 
that a microkernel architecture provides better isolation at the cost of additional 
layers of separation and complexity and allowed seemingly trusted code to be run 
in an untrusted domain; however, monolithic architecture executed trusted code 
within a trusted domain, was less complex, but allowed the possibility of hypervisor 
compromise.4  

The ability to leverage hardware-assisted virtualization with XEN and split drivers 
in separate driver domains allows trusted code to be run in trusted domains. For 
example, an attacker compromising a network driver domain will not be able to 
escape to an application or kernel of a guest VM and will not be able to compromise 
the hypervisor. The fundamental reason for this greater amount of protection is 
attributed to a greater degree of isolation provided by the XEN hypervisor design. 
Although XEN allows for a greater degree of isolation between the hypervisor and 
the drivers, KVM still provides a degree of isolation between the hypervisor and 
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guest VMs, which is increased by the use of hardware-assisted virtualization. 
Through the use of XEN, paravirtualization, and hardware-assisted virtualization, 
a far greater degree of isolation exists between drivers, hypervisor, and guest VMs 
as a result of a microkernel architecture. The use of paravirtualization allows for 
seemingly trusted code to be executed at a privilege level of 0 while still allowing 
for a microkernel architecture. However, there is still a large amount of overhead 
within the guest domains, with a large amount of redundant functionality (process 
scheduling, driver code, etc.) in the guest kernels. Although reduction of overhead 
can lead to increased performance, it can also help to increase security by 
decreasing the complexity. The greater the degrees of complexity and introduction 
of additional code lead to a chance of added vulnerabilities. Further work must be 
performed to provide a clear delineation between the boundaries and trust levels of 
each component (hypervisor, guest domains, and drivers) and eliminate the 
redundant overhead, perhaps by using unikernels or containers. 

4. Containers 

Containers provide similar functionality to virtualization, but there are several 
subtle differences. The concept of containers was developed to reduce the footprint, 
allowing developers to ease the transition from the development and testing phase 
to deployment in production. Containers enable further use of the tremendous 
computational power of modern hardware. The fundamental Linux construct of 
namespaces, cgroups, and capabilities makes the container concept possible. There 
are many container products available, such as Flockport LXC, Dockers, and many 
others. In addition, Microsoft has recently started offering Windows containers in 
Windows Server 2016 and Windows 10. While there are some differences between 
container solutions, this report focuses on Dockers, as the fundamental concepts are 
the same.  

Each separate Docker application is a component called a microservice, which can 
be combined to compose a larger application. A Docker container is a specific 
instance of an image, which is a union read-only file system, combining several 
layers (different file systems) and contains the application and dependencies to be 
executed. These images are stored in a registry that can be either public or private. 
The Docker Engine is responsible for creating a fresh container instance from the 
images stored within the registry, setting network configurations and namespaces, 
and restricting the allowed Linux kernel capabilities for the container.  

As seen in Fig. 4, the Docker Engine runs as an application with root privileges 
within the ring level 3 (user space), whereas the namespaces and Linux kernel 
capabilities are enforced by the Linux kernel at ring level 0. The results of an 
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investigation into Docker Security6 concluded that Docker was secure in terms of 
isolation between each container and provided a significant amount of network 
isolation. The only negative finding was the vulnerability of traffic capture/sniffing 
because all of the traffic is sent over a bridge interface of the host system to each 
container, which is common within any networked environment.6 

 

Fig. 4 Docker 

However, because the Docker Engine is running within the user space, all 
containers share the same kernel (shown in Fig. 4). As a result, if the kernel is 
compromised, all containers running on the host will be compromised as well. In 
addition, there is no isolation between each of the drivers and the kernel namespace 
mechanism providing isolation between containers. Each container is simply a 
process running on the same kernel at the ring level 3 privilege. In addition, other 
user space applications (ring level 3) running on the host could allow the ability to 
interfere with the container processes that are running. Although containers provide 
an adequate amount of isolation between each other, unikernels were introduced 
and can provide even more isolation with a further reduced attack surface and a 
dramatic increase in runtime performance. 

6. Unikernels 

Unikernel technology was introduced by the University of Cambridge in 2013–
2015 with the research and development of MirageOS. Since that time, several 
other alternatives to MirageOS have been introduced such as OSv and Rump 
kernels. All of these unikernels are based on the same concept of reducing the 
footprint of an application running in the cloud. For example, traditionally, each 
Web server application running in the cloud requires the extra overhead of the OS 
containing a monolithic kernel that carries unnecessary code and services for a 
single application (Fig. 5).  
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Fig. 5 Traditional VM vs. unikernel 

Unikernel is a new approach to building a specialized kernel that contains the 
application code, runtime (i.e., Mirage Runtime in MirageOS), and necessary 
kernel dependencies. This specialized unikernel can then be run on a hypervisor. 
This concept again allows for the building of a mircoservices architecture and is 
sometimes referred to as a “library operating system”.2 Similar to containers, 
unikernels are only able to run a single process. Therefore, if multiple parallel 
instances are required, the unikernel must be duplicated and run several times on 
the hypervisor. The hardware consumption constraints and scheduling of hardware 
access is handled by the hypervisor. For example, the MirageOS system contains 
many different core fundamental library components such as the TCP/IP 
(Transmission Control Protocol/Internet Protocol) () module to leverage in building 
a single application.2 In MirageOS, the application and all of the dependency 
components and Mirage Runtime are “compiled” into a single unikernel to run on 
the hypervisor.2 The footprint of these unikernels are considerably smaller than a 
full VM containing an OS and application. In addition, the boot time is measured 
in milliseconds, and networking performance has been shown to be better than a 
traditional VM-based server.2  

The increase in performance, with respect to networking, is partially attributed to 
the application running within the same address space as the “kernel components”, 
alleviating a context switch between privilege levels for the user application and 
kernel. In a unikernel, a delineation between user and kernel space does not exist. 
Therefore, both the user application and core fundamental kernel components are 
running at the same privilege of ring level 0. In addition, the attack surface is 
reduced because unnecessary services and code are removed, leaving only 
necessary kernel dependencies. The isolation between each unikernel is provided 
by the hypervisor, similar to the VM process. Unikernel technology is still in its 
infancy and will require further research to streamline the ease of unikernel 
application development and deployment. 

7. Isolation Comparisons 

Each of these 3 technologies are similar in function but have subtle differences in 
security characteristics, making some more isolated and secure than others (see 
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Table 1 for comparisons). The greatest amount of isolation provided between each 
instance is virtualization. The isolation provided is attributed to the isolation by the 
hypervisor, which leverages the memory segmentation provided in hardware by 
ring levels and hardware virtualization extensions. However, although hypervisors 
provide good isolation, not all hypervisors provide the same amount of protection. 
Both XEN and KVM provide a good amount of isolation, but XEN benefits from 
separating the drivers from the hypervisor into a privileged VM. In addition, 
paravirtualization and the use of separate driver domains can be combined in XEN 
to provide an even stronger amount of isolation and protection from kernel and 
driver vulnerabilities. The use of paravirtualization requires patching of the guest 
OS kernel. Although patching is required, it is more secure than using QEMU to 
run an unmodified guest OS. The QEMU module is extremely complex because it 
emulates many hardware components, which leads to a higher possibility of 
vulnerabilities.3 For example, the VENOM vulnerability found in 2015 leveraged 
a bug in the floppy drive emulation code within QEMU to break out of the VM to 
the host running the hypervisor.7 The hypervisor microkernel is the most trusted 
component and should be well-isolated from other potential attack vectors. By 
separating the drivers from the hypervisor, the microkernel allows the attack 
surface to be reduced to the code of the hypervisor. Although many kernel drivers 
have been shown to contain vulnerabilities, it is imperative to separate them from 
the hypervisor. 

Table 1 Comparison of security characteristics 

Type Products Ring level Isolation 
provided by 

Image 
size 

Virtualization XEN, KVM, Hyper-V, 
ESXi Level 0 or -1 Hypervisor Large 

Container 
Docker, Flockport 
LXC 

Level 3, enforced 
at Level 0 Host Kernel Medium 

Unikernel MirageOS, OSv, 
Rumpkernel Level 0 Hypervisor Small 

8. Conclusions 

Although virtualization provides good isolation, it is unrealistic and extremely 
inefficient to install a single application on an OS within a VM. A better alternative 
in terms of footprint and reduced overhead would be to use containers, but this does 
not offer strong isolation like virtualization. Nonetheless, the emerging concept of 
unikernels could provide a small footprint, reduced overhead, and strong isolation 
due to the use of the hypervisor; however, this is not the optimal solution due to its 
lack of privilege levels within the unikernel itself. The unikernel lacks the ability 
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to separate a seemingly trusted “kernel code” from the application code itself. This 
means the unikernel kernel code and application code are running at the same ring 
level of 0 while running on a hardware-assisted hypervisor. Because both 
application code and kernel code are running at the same privilege level, this 
alleviates the need for processor context switches, which partially contributes to the 
performance speedup. Although the combination of hypervisors and unikernels 
could be considered as an “adequate” solution, an “optimal” solution has not been 
developed yet.  

An optimal solution, in terms of security isolation, requires the separation of trusted 
versus untrusted code, reduced overhead, and an increase in performance. A 
combined approach for an optimized solution will require the use of many of the 
best features of each of the 3 technologies. In the search for an optimal solution, it 
is imperative to have metrics to assess the solution. Proposed metrics include 
architectural differences (monolithic vs. microkernel), the use of privilege levels 
(ring 0-3), and attack surface measurements. These metrics will help guide the 
experimentation and uncover vulnerabilities that are not otherwise apparent. 
Further analysis and experimentation of all 3 of these technologies are required to 
advance the security state of applications. Each technology brings a security aspect 
to assist in the advancement of a secure, small footprint, and reduced overhead 
environment. A hybrid combination of all 3 technologies could show potential in 
advancing the security state of applications. 
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